Reka bentuk inovatif dan trend pembangunan pintar acuan suntikan
Pencetakan suntikan, sebagai salah satu teknologi pemprosesan yang paling banyak digunakan dalam pembuatan moden, tahap teknikal pembawa terasnya, acuan suntikan, secara langsung menentukan kualiti produk, kecekapan pengeluaran dan kos pembuatan. Dengan kemunculan bahan -bahan baru, proses baru dan teknologi baru, industri acuan suntikan sedang menjalani tempoh transformasi kritikal dari pembuatan tradisional kepada pembuatan pintar, tepat dan hijau. Artikel ini secara sistematik akan meneroka teknologi canggih dan penemuan praktikal dalam bidang acuan suntikan dari aspek seperti reka bentuk inovatif struktur acuan, penerapan bahan-bahan baru, teknologi pembuatan pintar, konsep pengeluaran hijau, dan trend pembangunan masa depan, memberikan idea dan rujukan baru untuk pembangunan industri.
Pengilang Aksesori Crossbeam Radiator Automobil di China (JFMoulds.com)
I. Petunjuk terobosan untuk reka bentuk struktur acuan suntikan yang inovatif
Reka bentuk struktur acuan suntikan adalah faktor teras yang menentukan kualiti pencetakan. Struktur acuan tradisional sering menghadapi masalah seperti kecekapan yang rendah dan kestabilan yang lemah apabila berurusan dengan bentuk geometri yang kompleks, keperluan ketepatan tinggi, atau pencetakan bahan khas. Dalam tahun -tahun kebelakangan ini, industri telah menyaksikan kemunculan banyak teknologi terobosan dalam inovasi struktur, dengan berkesan menangani titik kesakitan reka bentuk tradisional.
1. Reka bentuk saluran air penyejuk konformal dan aplikasi pembuatan tambahan
Saluran air penyejuk acuan tradisional kebanyakannya struktur lurus atau mudah melengkung, yang sukar dipadankan dengan bentuk kompleks bahagian plastik, mengakibatkan masalah seperti penyejukan yang tidak sekata, kitaran pencetakan panjang, dan melengkapkan dan ubah bentuk bahagian plastik. Reka bentuk saluran air penyejuk conformal mensimulasikan pengagihan medan suhu bahagian plastik melalui kejuruteraan dibantu komputer. Ia mengamalkan struktur saluran air melengkung tiga dimensi selari dengan kontur permukaan bahagian plastik, yang membolehkan medium penyejukan mengalir secara merata melalui semua bahagian bahagian plastik dan meningkatkan kecekapan penyejukan dengan ketara.
Kematangan teknologi pembuatan bahan tambahan menyediakan kemungkinan untuk memproses saluran air penyejuk konformal. Dengan mengadopsi teknologi lebur laser terpilih, teras dan rongga acuan boleh secara langsung sintered, mengintegrasikan saluran air konformal yang kompleks di dalam acuan tanpa memerlukan splicing atau proses penggerudian dalam pemprosesan tradisional. Amalan perusahaan bahagian auto tertentu menunjukkan bahawa penggunaan penyejukan konformal untuk acuan bumper telah mengurangkan masa penyejukan dari 60 saat asal hingga 35 saat, meningkatkan kecekapan pengeluaran sebanyak 40%. Pada masa yang sama, peperangan bahagian plastik dikawal dalam 0.1mm, dan kadar sekerap telah menurun sebanyak 60%.
2. Reka bentuk struktur acuan modular dan cepat berubah
Sebagai tindak balas kepada tuntutan pengeluaran pelbagai jenis dan kelompok kecil, reka bentuk acuan modular membolehkan beralih cepat di antara bahagian plastik yang berbeza dengan menguraikan acuan ke dalam modul standard seperti asas acuan asas, rongga/teras yang boleh diganti, dan mekanisme penarik teras. Modul-modul ini disambungkan oleh pin kedudukan ketepatan tinggi dan peranti mengunci untuk memastikan ketepatan pemasangan selepas acuan berubah. Selepas perusahaan perkakas rumah tertentu mengguna pakai acuan modular untuk barisan pengeluaran panel mesin basuh, masa perubahan acuan dipendekkan dari tradisional 2 jam hingga 15 minit, dan kadar penggunaan peralatan meningkat sebanyak 25%.
Teknologi perubahan acuan yang cepat juga termasuk sistem perubahan acuan automatik yang didorong oleh hidraulik/pneumatik. Melalui hubungan sensor dan sistem kawalan, ia menyedari pengenalan automatik, kedudukan dan pengapit acuan. Memasang peranti dibantu robot di antara mesin pengacuan suntikan dan acuan dapat mengurangkan intervensi manual dan membolehkan proses perubahan acuan sepenuhnya automatik.
3. Inovasi dalam acuan berpisah dan mekanisme penarik teras untuk rongga kompleks
Bagi bahagian plastik dengan struktur kompleks seperti rongga yang mendalam, lubang terbalik, dan lubang sampingan, mekanisme teras tradisional sering mempunyai masalah seperti struktur kompleks, gangguan gerakan, atau daya teras yang tidak mencukupi. Dalam tahun-tahun kebelakangan ini, industri telah membangunkan pelbagai penyelesaian teras inovatif:
Mekanisme teras-teras berlapis: Melalui reka bentuk teras bersarang berbilang lapisan, ia menyadari teras-teras berlapis bahagian plastik rongga yang mendalam, mengelakkan kerosakan pada bahagian-bahagian plastik yang disebabkan oleh tindakan teras yang menarik. Acuan shell luar set infusi perusahaan peranti perubatan tertentu mengamalkan tiga lapisan yang ditumpuk teras-tarik, berjaya menyelesaikan masalah teras yang menarik dari struktur tiub dengan kedalaman sehingga 120mm.
Mekanisme komposit teras teras dan berputar yang cenderung: ia menggabungkan gerakan linear bahagian atas yang cenderung dengan gerakan pekeliling teras teras berputar, dan sesuai untuk bahagian plastik dengan alur helical atau lekukan sampingan yang kompleks. Antara muka berulir yang membentuk shell pengecas telefon bimbit sering mengamalkan struktur ini untuk memastikan ketepatan benang mencapai gred ISO 4H.
Sistem penarik teras yang fleksibel: Ia mengamalkan lengan mekanikal berbilang darjah yang didorong oleh motor servo sebagai penggerak teras. Dengan mengawal laluan teras melalui program, ia boleh menyesuaikan diri dengan perubahan struktur minit dari kumpulan plastik yang berlainan dan sangat sesuai untuk pengeluaran yang disesuaikan.
4. Pengoptimuman pelari untuk acuan suntikan pelbagai bahan
Multi-bahan pengacuan suntikan boleh mencapai acuan bersepadu bahagian plastik bahan, warna atau sifat yang berbeza dalam acuan yang sama, mengurangkan proses pemasangan berikutnya. Inti struktur acuannya terletak pada reka bentuk sistem pelari, yang memerlukan kawalan tepat urutan pengisian, nisbah aliran dan integrasi antara muka pelbagai bahan.
"Runner Switching Dynamic" yang inovatif mengawal masa suntikan bahan -bahan yang berbeza melalui injap solenoid, dan digabungkan dengan reka bentuk pintu kecerunan, ia membolehkan kedua -dua bahan membentuk struktur berlapis seragam dalam rongga. Kes smartwatch perusahaan elektronik tertentu dibuat oleh pengacuan bersama ABS dan TPU. Melalui pengoptimuman saluran aliran, kekuatan ikatan kedua -dua bahan telah meningkat kepada 25MPa, jauh melebihi 15MPA struktur tradisional. Di samping itu, untuk acuan berputar pelbagai warna, plat pembahagian ketepatan tinggi digunakan untuk mengawal sudut putaran rongga, memastikan sempadan yang jelas dari pewarna dan mengelakkan kecacatan pencampuran warna.
Pengilang acuan dulang di China (jfmoulds.com)
Ii. Kemajuan aplikasi bahan acuan baru dan teknologi rawatan permukaan
Prestasi bahan acuan secara langsung mempengaruhi hayat perkhidmatan, membentuk ketepatan dan kos pembuatan acuan. Dengan permintaan yang semakin meningkat untuk membentuk bahan -bahan khas seperti suhu tinggi, keterujaan yang tinggi dan kadar pengisian yang tinggi, keluli mati tradisional telah menjadi sukar untuk memenuhi keperluan. Penggunaan bahan -bahan baru dan teknologi rawatan permukaan telah menjadi arahan penting bagi pembangunan industri.
Penyelidikan dan penggunaan keluli mati berprestasi tinggi
Keluli mati tradisional seperti CR12 dan S136 mempunyai masalah prestasi individu yang cemerlang dari segi kekerasan, rintangan haus atau rintangan kakisan, tetapi prestasi keseluruhan yang tidak mencukupi. Dalam tahun-tahun kebelakangan ini, perusahaan keluli domestik dan asing telah membangunkan pelbagai keluli mati aloi berprestasi tinggi. Melalui pengoptimuman komposisi dan peningkatan proses rawatan haba, mereka telah mencapai kejayaan dalam prestasi komprehensif.
Serbuk Metalurgi keluli berkelajuan tinggi: keluli mati ASP-60 yang dihasilkan oleh proses metalurgi serbuk, dengan unsur-unsur aloi seperti kandungan tungsten, molibdenum dan vanadium mencapai lebih dari 15%. Selepas rawatan haba, kekerasannya dapat mencapai HRC 65-67, dan rintangan hausnya adalah tiga kali dari keluli CR12 tradisional. Ia sesuai untuk memproses plastik bertetulang dengan gentian kaca tambahan. Selepas acuan enjin kereta tertentu mengamalkan bahan ini, hayat perkhidmatannya meningkat daripada 500,000 kitaran kepada 1.5 juta kitaran.
Keluli tahan karat martensit yang tahan karat: seperti keluli 718h, dengan meningkatkan kandungan unsur kromium dan nikel dan menggunakan rawatan ultra-halus, ia dapat mengekalkan kekerasan HRC 50-52 sambil mencapai rintangan kakisan garam lebih dari 5000 jam, menjadikannya sesuai untuk pencabulan.
Keluli berkekuatan tinggi suhu rendah: Selepas rawatan kriogenik yang mendalam, kandungan austenit sisa di dalam keluli stavax ESR dikurangkan kepada di bawah 5%. Pada suhu bilik, kekuatan tegangannya mencapai 1800MPa, dan ia masih dapat mengekalkan sifat mekanik yang stabil dalam persekitaran suhu rendah sebanyak -50 ℃. Ia sesuai untuk acuan plastik kejuruteraan yang dibentuk pada suhu rendah.
2. Innovative application of non-metallic mold materials
In the field of small-batch production or prototype manufacturing, non-metallic material molds have been widely applied due to their advantages of low cost and short cycle. In recent years, the performance of composite material and engineering plastic molds has been continuously improving, gradually penetrating into the medium-batch production field:
Carbon fiber reinforced epoxy resin mold: Formed by the composite molding of carbon fiber and epoxy resin, the mold weight is only 1/5 of that of traditional steel molds. The thermal conductivity can be adjusted to 15-20 W/(m·K) by adding graphene, making it suitable for low-pressure molding of thermosetting plastics. The outer shell mold of a certain aerospace enterprise's unmanned aerial vehicle adopts this material, reducing the manufacturing cost by 60% and shortening the production cycle from 45 days to 15 days.
Peek-based engineering plastic molds: PEEK (polyetheretherketone) features high-temperature resistance and chemical corrosion resistance. By adding glass microspheres, the coefficient of linear expansion can be controlled below 8×10^-6/℃, making it suitable for injection molding of small plastic parts. The disposable syringe molds of a certain medical equipment enterprise are made of PEEK material. The cost of a single set of molds is only 1/10 of that of steel molds, and it can meet the production demand of 10,000 to 50,000 molds.
3. Advanced surface treatment technology enhances the performance of molds
Surface treatment technology can significantly enhance the wear resistance, corrosion resistance, demolding property and other properties of molds by forming special coatings or modified layers on the surface of molds, while reducing production costs. In recent years, innovations in the field of surface treatment in the industry have focused on the following aspects:
Physical vapor deposition (PVD) super-hard coating: By using multi-arc ion plating technology to deposit coatings such as TiAlN and CrN on the mold surface, the thickness is controlled at 3-5μm, the hardness can reach HV 2500-3000, and the coefficient of friction is reduced to below 0.2. After a certain bottle cap mold enterprise applied the TiAlN coating, the demolding force of the mold was reduced from the original 80N to 35N, eliminating the need for mold release agents and avoiding surface contamination of plastic parts.
Chemical vapor deposition (CVD) diamond coating: Polycrystalline diamond coatings are deposited on the mold surface through hot wire CVD technology, with a hardness as high as HV 10000 and a thermal conductivity of 800 W/(m·K), making it suitable for processing reinforced plastics with high filling rates (glass fiber content above 50%). Experimental data show that the service life of molds coated with diamond is 10 to 15 times that of uncoated molds.
Laser surface texturing treatment: By using femtosecond laser to process micron-level (5-50μm) pits or stripe structures on the surface of the mold cavity, a "micro-oil storage tank" or "gas film layer" is formed, which can reduce the friction coefficient by more than 50%. For the molding of high-viscosity materials such as PC (polycarbonate), texturing treatment can reduce the injection pressure by 15% to 20% and decrease the internal stress of the plastic part.
Sol-gel ceramic coating: A SiO2-Al2O3 composite ceramic coating is formed on the mold surface through the sol-gel method, with a thickness of 1-2μm. It has excellent corrosion resistance and non-stickiness, and is suitable for the molding of easily decomposable materials such as PVC and POM. After the PVC drainage pipe molds of a certain pipe fitting enterprise adopted this coating, the mold cleaning cycle was extended from 15 days to 60 days, and the production stability was significantly improved.
Sampah boleh acuan pengeluar di China (jfmoulds.com)
Iii. Intelligent Manufacturing and Digital Management of Injection Molds
The in-depth advancement of the concepts of Industry 4.0 and intelligent manufacturing has driven the injection mold industry to transform from the traditional "experience-driven" model to a "data-driven" one. Intelligent manufacturing technology integrates technologies such as sensors, the Internet of Things, and big data analysis with the entire process of mold design, processing, and usage, achieving high-precision, high-efficiency, and high-reliability production of molds.
Mold design and simulation based on digital twins
Digital twin technology achieves dynamic simulation and optimization of the entire process from design, processing, mold testing to production by building a virtual digital transformation of molds. During the design stage, 3D modeling software is used to construct the geometric model of the mold, and CAE simulation tools are combined to simulate and analyze processes such as filling, holding pressure, cooling, and warping.
Filling process simulation: By simulating the flow path, pressure distribution and temperature changes of the molten material in the cavity, the position and number of gates are optimized. The mold for the refrigerator drawer of a certain home appliance enterprise reduced the number of gates from 4 to 2 through simulation, eliminating the defect of weld marks.
Cooling system simulation: Calculate the temperature field distribution of the mold based on the heat conduction equation, optimize the diameter, spacing and flow rate of the water channels, and control the temperature difference of the mold within ±2℃.
Warpage prediction and compensation: Based on the material shrinkage rate data, the reverse compensation amount is preset during mold design to counteract the warpage deformation of the plastic part after molding.
The digital twin model can also be connected with the real-time data of production equipment. During the mold trial stage, process parameters can be optimized through virtual debugging, reducing the number of physical mold trials. The practice of a certain auto parts enterprise shows that after adopting digital twin technology, the number of mold trials has been reduced from the traditional 5 to 8 times to 2 to 3 times, shortening the development cycle by 30%.
2. Integration of intelligent processing equipment and techniques
The high-precision processing of mold parts relies on the coordination of intelligent processing equipment and techniques. In recent years, the intelligence level of five-axis linkage machining centers, high-speed milling, electrical discharge forming and other equipment has significantly improved. Combined with adaptive control technology, real-time adjustment of the processing process has been achieved.
Five-axis linkage machining center: It adopts closed-loop control of grating rulers and thermal error compensation technology, and can complete the milling, drilling, tapping and other processes of complex cavities in one clamping. When a certain precision mold enterprise processes the curved cavity of the mobile phone shell mold, the surface roughness is controlled within Ra 0.05μm, meeting the requirements of mirror effect.
High-speed milling technology: High-speed milling machines with spindle speeds ranging from 40,000 to 60,000 r/min, in combination with ultra-fine-grained cemented carbide tools, can achieve high-speed cutting of die steel, with a material removal rate of up to 500cm³/min, and the processing efficiency is three times that of traditional milling.
Adaptive control of electrical discharge forming: By using sensors to monitor the discharge gap and current changes in real time, the pulse parameters are automatically adjusted to avoid dimensional errors caused by uneven electrode wear. For the deep and narrow groove structure in the mold, the processing accuracy can reach ±0.002mm.
In addition, the integration of the automated loading and unloading system with processing equipment has enabled 24-hour continuous production, reducing the processing cycle of mold parts by more than 40%.
3. Mold condition monitoring and predictive maintenance
During the use of molds, by installing sensors to monitor their operating status in real time and combining big data analysis to achieve predictive maintenance, the downtime caused by sudden failures can be significantly reduced. Commonly used monitoring techniques include:
Temperature monitoring: Thermocouples or infrared temperature sensors are embedded in the mold cavity and core to collect temperature data in real time. An alarm is issued when the temperature exceeds the set range to prevent defects in plastic parts due to overheating or overcooling.
Pressure monitoring: Install pressure sensors inside the cavity to monitor the changes in the injection pressure and holding pressure of the molten material, and promptly detect problems such as blockage at the feed port or mold leakage.
Vibration monitoring: By collecting the vibration signals during the opening and closing of the mold through an acceleration sensor, analyzing the changes in vibration frequency and amplitude, and determining the wear status of the guide pins and guide sleeves.
Wear monitoring: A laser displacement sensor is used to scan the surface of the cavity, and the wear amount is calculated by comparing it with the initial size. When the wear amount exceeds 0.01mm, a warning is issued to prevent the mass production of substandard plastic parts.
The data acquisition system transmits sensor signals to the cloud platform and builds a fault prediction model through machine learning algorithms to predict potential faults 3 to 5 days in advance and generate maintenance suggestions. After a certain automotive mold enterprise applied this technology, the downtime due to mold failures was reduced by 60%, and the maintenance cost was lowered by 35%.
Iv. Future Development Trends and Challenges of the Injection Mold Industry
1. Deep integration of intelligence and automation
In the future, injection molds will develop towards full-process intelligence: artificial intelligence (AI) will be used in the design stage to automatically generate mold solutions; During the processing stage, intelligent scheduling and adaptive processing of equipment, cutting tools and fixtures are achieved. During the production stage, the Internet of Things (iot) is utilized to enable the collaborative work of molds, injection molding machines, and robots, thereby building an unmanned intelligent production line.
2. Adaptation of new materials to new forming processes
With the wide application of bio-based plastics, high-performance composite materials and functional materials, molds need to adapt to the special properties of the materials: in view of the high water absorption of bio-based plastics, anti-corrosion molds should be developed; In response to the high filling rate of composite materials, the wear resistance of molds is enhanced. To meet the precision forming requirements of functional materials, achieve micron-level precision control.
3. The balance between globalization and personalized customization
Under the background of global division of labor, mold enterprises need to establish cross-regional collaborative design and manufacturing networks, and achieve design data sharing and remote debugging through cloud platforms. At the same time, in the face of the growth of consumers' personalized demands, molds need to have the ability to respond quickly and achieve small-batch customized production through modular and parametric design.
2025-07-14
Acuan suntikan: juara tersembunyi dalam pembuatan perindustrian di...
2025-06-22
Huangyan daerah bandar Taizhou dikenali sebagai "hometown dituang di China"...
2025-07-02
Meneroka acuan suntikan: asas pembuatan ketepatan dalam...
2025-06-28
Sampah boleh acuan pengeluar di China (jfmoulds.com)intotheWorldofInjectionMold...
2025-07-10
Analisis dalam kedalaman acuan suntikan: penerokaan proses penuh dari reka bentuk ke...
2025-07-15
Evolusi diselaraskan lelaran teknologi dan perindustrian ecosystemI.